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1 Summary

e Gauss-Markov assumptions (for multiple linear regression model):

MLR.1 (linearity in parameters): The model is
yi = Bo + Brzin + -+ + Brwik + ui,

where fy, ..., Bk are unknown parameters (constants) and u; is an unobserved random error term.

MLR.2 (random sampling): We have a random sample of n independent observations
{(xi1,y -y Tig,yi) 10 =1,...,n}.

MLR.3 (no perfect collinearity): No exact linear relationships between variables (and none of the inde-
pendent variables is constant).

MLR.4 (zero conditional mean): E(u;|2;1,...,2z;x) = 0.

MLR.5 (homoskedasticity): Var(u;|z;1, ..., 7%) = 02.

e Heteroskedasticity of Unknown Form: Heteroskedasticity that may depend on the explanatory vari-
ables in an unknown, arbitrary fashion.

o Heteroskedasticity-Robust Standard Error: (White standard errors) A standard error that is
(asymptotically) robust to heteroskedasticity of unknown form. Can be obtained as the square root
of a diagonal element of

Var(Bors) = (X'X)' X'QX (X'X) !,
where Q) = diag(a3,...,42), the diagonal matrix with squared OLS residuals on the diagonal.

e Heteroskedasticity-Robust Statistic: A statistic that is (asymptotically) robust to heteroskedasticity
of unknown form. E.g. t, F', LM statistics.

e Breusch-Pagan Test: (LM test) A test for heteroskedasticity where the squared OLS residuals are
regressed on exogenous variables — often (a subset of) the explanatory variables in the model, their
squares and/or cross terms.

e White Test (without cross terms): A special case of Breusch-Pagan Test, which involves regressing
the squared OLS residuals on the squared explanatory variables.

e Weighted Least Squares (WLS) Estimator: An estimator used to adjust for a known form of
heteroskedasticity, where each squared residual is weighted by the inverse of the variance of the error.

e Feasible WLS (FWLS) Estimator: An estimator used to adjust for an unknown form of heteroskedas-
ticity, where variance parameters are unknown and therefore must first be estimated.



2 Extra Topics

2.1 Goldfeld—Quandt (1965) test

In a nutshell

e Idea: If the error variances are homoskedastic (equal across observations), then the variance for
one part of the sample will be the same as the variance for another part of the sample.

e Based on the ratio of variances.

e Test for the equality of error variances using an F-test on the ratio of two variances.
e Key assumption: independent and normally distributed error terms.

e Divide the sample of into three parts, then discard the middle observations.

e Estimate the model for each of the two other sets of observations and compute the corresponding
residual variances.

e It requires that the data can be ordered with nondecreasing variance.

e The ordered data set is split in three groups:
1. the first group consists of the first n; observations (with variance o%);
2. the second group of the last no observations (with variance 03);
3. the third group of the remaining n3 = n —n; — ny observations in the middle. This last group is left
out of the analysis, to obtain a sharper contrast between the variances in the first and second group.

e The null hypothesis is that the variance is constant for all observations, and the alternative is that the
variance increases.

e Hence, the null and alternative hypotheses are
Hy: of =03,

Hy: o?<o3.

e Apply OLS to groups 1 and 2 separately, with resulting sums of squared residuals SSR; and SSRs

respectively and estimated variances s7 = 25EL and s3 = 55982,
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e Under the assumption of independently and normally distributed error terms:
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and these two statistics are independent.
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e So, under the null hypothesis of equal variances, the test statistic

The null hypothesis is rejected in favour of the alternative if F' takes large values.
e There exists no generally accepted rule to choose the number ns of excluded middle observations.
— If the variance changes only at a single break-point, then it would be optimal to select the two groups
accordingly and to take ng = 0.

— On the other hand, if nearly all variances are equal and only a few first observations have smaller
variance and a few last ones have larger variance, then it would be best to take ng large.

— In practice one uses rules of thumb: e.g. n3 = % if the sample size n is small and n3z = % if n is large.



2.2 Correction factor for multiplicative models

Recall that we distinguish two models for heteroskedasticity in the context of FWLS:

e multiplicative heteroskedasticity model

Var(u;|x;) = o?exp (60 + 01xin + -+ + 0kTir) ;

e additive heteroskedasticity model

Var(ui|xi) = (50 + 511’1‘1 + 4 5kxzk

The latter has, however, a disadvantage that (estimate of) Var(u;|x;) can be negative, so we mainly focus on
the former one.

Notice that in the multiplicative model we have

Var(u;|z;) B(us]2:)=0 E(u?|z;)

= 0% exp (60 + 012i1 + -+ + OkTir) ,
so it is equivalent with

w2 = g2 exp (0o + 0@ + -+ + dpxik) v,

2
u; :
V= ——5—— (<= mean 1 random variable)

B (uf ;)

Hence, we consider
log(u?) = ap + 61241 + - + SpTik + M,

where 7; is the error term
n; = log(v;) — E(log(v;))

and «q is a constant term
oo = log(c?) + 0 + E(log(v;)).

Hence, the coefficient dg of the constant term is not consistently estimated by &y from OLS. To obtain its
consistent estimate a correction factor is needed so &g is then estimated by

50 + a,
where, if the errors are normally distributed (u;|z; ~ N(0,02)),
a = —E[log(x})] ~ 1.27.

We will see how this works in Computer Exercise 2 (i)*.

INote, however, that a consistent estimator of &g is not needed, because exp(So) is merely a constant scaling factor that does
not affect the FWLS estimator.



3 Warm-up Exercises

3.1 W8/1

Which of the following are consequences of heteroskedasticity?

(i) The OLS estimators, Bj, are inconsistent.

The homoskedasticity assumption played no role in showing that the OLS estimator is consistent. Indeed,
even with Var(u|X) = Q # 021 we have for Sors = 8+ (X'X) ™" X u:
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so the OLS estimator is still consistent.

(i) The usual (homoskedasticity-only) F statistic no longer has an F distribution.

Now, we have

Var(Bors) = (X'X) " X'QX (X'X) ",

so the usual expression

(X' X))
for the variance does not apply anymore. The latter expression is biased, which makes the standard
(homoskedasticity-only) F test (and ¢ test) invalid. One should use a heteroskedasticity-robust F' (and t)

statistic, based on heteroskedasticity-robust standard errors.

(ii) The OLS estimators are no longer BLUE.

As heteroskedasticity is a violation of the Gauss-Markov assumptions, the OLS estimator is no longer
BLUE: it is still linear, unbiased, but not “best” in a sense that it is not efficient. Intuitively, the
inefficiency of the OLS estimator under heteroskedasticity can be contributed to the fact that observations
with low variance are likely to convey more information about the parameters than observations with high
variance, and so the former should be given more weight in an efficient estimator (but all are weighted
equally).

3.2 W8/2

Consider a linear model to explain monthly beer consumption:

beer = By + Princ + Paprice + Bseduc + By female + u,
E(uline, price, educ, female) = 0,
Var(uline, price, educ, female) = o%inc?.
Write the transformed equation that has a homoskedastic error term.

With Var(ulinc, price, educ, female) = o?inc® we have h(x) = inc?, where h(z) is a function of the explanatory

variables that determines the heteroskedasticity (defined as Var(u|z) = o?h(z)). Therefore, \/h(x) = inc, and
so the transformed equation is obtained by dividing the original equation by inc:

beer mnc price educ female U
. 2507 51* 52 —— + f3—— + f1— +—
inc mc inc inc inc
price educ female U
—50*4-514—52 + fB3— + Ba— +—.
inc inc inc

Notice that 1, which is the slope on inc in the original model, is now a constant in the transformed equation.
This is simply a consequence of the form of the heteroskedasticity and the functional forms of the explanatory
variables in the original equation.



3.3 Small computer exercise

Using the data in the file earnings.wf1? run the regression

Yi = Bidi; + Bada; + Badsi + u; (1)

where dy;, k =1,2,3, are dummy variables for three age groups. Then test the null hypothesis that E(u?) = o>
against the alternative that

E(u?) = yidy; + Yodo; + Vadsi-
Report p-values for both F and nR? tests.
Recall that tests for homoskedasticity are constructed as follows:

Hy : homoskedasticity,
H; : not Hy, i.e. heteroskedasticity.

The easiest way to perform the required test is simply to regress the squared residuals from (1) on a constant
and two of the three (to prevent collinearity) dummy variables. Notice that this gives us the same results as
running the built-in heteroskedastisity test (Breusch-Pagan-Godfrey) in EViews:

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic 5872230 Prob. F(2,4263) 0.0028
Obs*R-squared 11.72044  Prob. Chi-Square(2) 0.0029
Scaled explained 55 19.34589 Prob. Chi-Square(2) 0.0001
Test Equation
Dependent Variable: RESID*2
Dependent Variable: RESID*2 Method: Least Squares
Method: Least Squares Sample: 1 4266
Sample: 1 4266 Included observations: 4266
Included observations: 4266 Collinear test regressars dropped from specification
Variable Coefficient  Std. Error  -Statistic Prob. Variable Coefiicient  Std.Error  t-Statistic Prab.
C 272E+08 11436983 2379601 0.0000 C 2 72E+08 11436983 23.79601 0.0000
GROUP1 57210408 17471405  -3.274517 0.0011 GROUP1 F7210408 17471405  -3.274517 0.0011
GROUP2 -38452071 15687465 -2.451133 0.0143 GROUPZ -38452071 15687465  -2.451133 0.0143
R-squared 0.002747 Mean dependentvar 242E+08  R-squared 0.002747 Mean dependent var 2 42E+08
Adjusted R-squared 0.002280 8.D. dependentvar 440E+08  Adjusted R-squared 0.002280 S.D. dependentvar 4 40E+08
S.E. of regression 4 40E+08 Akaike info criterion 4264243 SE ofregression 4. 40E+08  Akaike info criterion 42 64243
Sum squared resid 8.25E+20 Schwarz criterion 42.64690  Sum squared resid 8.25E+20 Schwarz criterion 4264690
Lag likelihood -90953.30  Hannan-Quinn criter 42.64401 Log likelihood -90953.30 Hannan-Quinn criter. 42 64401
F-statistic 5.872230 Durbin-Watson stat 0.019275 F-statistic 5.872230 Durbin-Watson stat 0.019275
Prob(F-statistic) 0.002839 Prob(F-statistic) 0.002839

e The F statistic from this regression for the hypothesis that the coefficients of the dummy variables are
zero is 5.872. Tt is asymptotically distributed as F(k,n — k — 1) = F(2,4263), and the p-value is 0.0028.

e An alternative statistic is nR?, which is equal to 11.72. It is asymptotically distributed as X% = x3, and
the p value is 0.0029. (Recall from the lecture that this is worse than F' test in finite samples).

The two test statistics yield identical inferences, namely, that the null hypothesis should be rejected at any
conventional significance level.

4 Problem on heteroskedasticity modelling

Consider the model y; = Bx; + €; (without constant term and with k = 1), where x; > 0 for all observations,
E(g;) =0, E(ese;5) =0, i # j, and E(e?) = o2. Consider the following three estimators of (3:

b _ Z?:l 3713/1

- n b
D %2
Z?:1 Yi

by = =,
Z;L:l i
1 < Yi
by = — aly

2 Average annual earnings in 1988 and 1989, in 1982 US dollars, for individuals in three age groups.



For each estimator, derive a model for the variances o? for which this estimator is the best linear unbiased
estimator of (3.

Recall that when we have a model for heteroskedasticity, i.e. in Var(u;|z;) = o2h(x;) the function h; = h(x;)
is known, then transforming the original data by dividing them by +/h; results in a linear regression where all
Gauss-Markov assumptions are satisfied, which means that the corresponding OLS estimator is BLUE.

Consider

yi = P + i, Var(u;|x;) = 02hy,
Yi X €i Uj 2
= + —= Var( glc-):a7
Vhi Vhi  Vhi Vhi| ™
::y;k ::z;‘ =ig;*

so that the corresponding OLS estimator is

Hence, we simply need to find what functions h; have led to the three given WLS estimators b;—b3.

5

1. To have BOLS = by we need

n iYi
Zi:1 = . Z?:l TiYi
- n 2
Yliet 2=t
which means that h; = 1, i =1,...,n (or h; = C for any other positive constant C, since this would

simply drop out in the numerator and the denominator), and Var(u;|x;) = 0. Notice that this is simply
the OLS estimator for the homoskedastic case.

:‘H >
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which means that h; = z;,i=1,...,n (or h; = Cz; for any other positive constant C'), and Var(u;|z;) =
o2x;. Notice that this is a valid expression for the variance due to the assumption that z; > 0,7 =1,...,n.

. To have BOLS = b3 we need

" S G
i—1 72
=1 zi

noZiYi n noYi nooTi Yi
die1 _1 Yi _ D ie1 o dic1 o5 s
z nzx
i=1 "

which means that h; = 2%, i =1,...,n (or h; = Cz? for any other positive constant C), and Var(u;|x;) =
2 2
o?z?.

Computer Exercises

Exercise 1

Sitmulate n = 100 data points as follows. Let x; consist of 100 random drawings from the standard normal
distribution, let n; be a random drawing from the distribution N'(0,z3), and let y; = x; +n; (i.e. the true value
is B=1). We will estimate the model y; = Bx; + &;.



(i) Estimate 8 by OLS. Compute the homoskedasticity-only standard error ofBOLS and the White heteroskedasticity-
robust standard error of Bors-

Dependent Variable: Y

Dependent Variable: Y Method: Least Squares
Method: Least Squares Date: 03/0717 Time: 15:20
Date: 03/07M17 Time: 15:20 Sample: 1100
Sample: 1100 Included observations: 100
Included observations: 100 White heteroskedasticity-consistent standard errors & covariance
Variable Coefficient Std. Error t-Statistic Frob. Wariable Coefficient Std. Error t-Statistic Prob.

X 0979034 0.095976 10.20087 0.0000 X 0.979034 01597358 6.129109 0.0000
R-zquared 0.499684 Mean dependentvar -0.218837 R-squared 0.499684 Mean dependentvar -0.218837
Adjusted R-squared 0.499684 S.0.dependentvar 1.359004 Adjusted R-squared 0.499684 S.D.dependentvar 1.359004
S.E. ofregression 0961264 Akaike info criterion 2768815 SE. ofregression 0961264 Akaike info criterion 2768815
Sum squared resid 91.47887 Schwarz criterion 2794867 Sum sguared resid 91.47887 Schwarz criterion 2794867
Log likelihood -137.4407 Hannan-CQuinn criter. 2779358 Loglikelihood -137.4407 Hannan-Clinn criter. 2779358
Durbin-Watson stat 2100710 Durbin-WWatson stat 2100710

(ii) Estimate B by WLS using the knowledge that o? = o?xz?. Compare the estimate and the homoskedasticity-
only and heteroskedasticity-robust standard errors obtained for this WLS estimator with the results for
OLS in (i).

We start with constructing the (correctly) transformed series:
. , y
Y= %, ! ::ﬁzl, er ==

xX; ¢ €Z; ¢ xX;

so that now the transformed error terms e are homoskedastic. We then run two OLS regressions on

the transformed series (one with the homoskedasticity-only standard errors and one with the White
heteroskedasticity-robust standard errors). Not surprisingly, both give us the same results.

Dependent Variable: ¥_STAR

Dependent Variable: Y_STAR Method: Least Squares
Method: Least Sguares Date: 03/0717 Time: 15:20
Date: 03/07M17 Time: 15:20 Sample: 1100
Sample: 1100 Included observations: 100
Included observations: 100 White heteroskedasticity-consistent standard errors & covariance
Variable Coefficient Std. Error -Statistic Prob. Variable Coefficient Std. Error t-Statistic Prob.
X_STAR 1.026907 0.098879 10.38549 0.0000 X_STAR 1.026907 0.098879 10.38549 0.0000
R-squared 0.000000 Mean dependentvar 1.026907 R-squared 0.000000 Mean dependentvar 1.026907
Adjusted R-squared 0.000000 S.0. dependentwvar 0.988790 Adjusted R-squared 0.000000 3S.D.dependentvar 0.988790
S.E. of regression 0.988790 Akaike info criterion 2825281 SE. ofregression 0.988790 Akaike info criterion 2825281
Sum squared resid 96.79293 Schwarz criterion 2851333  Sum squared resid 96.79293 Schwarz criterion 2851333
Log likelihood -140.2640 Hannan-Quinn criter. 2835824  Loglikelihood -140.2640 Hannan-Quinn criter. 2835824
Durbin-Watson stat 1.834168 Durbin-Watson stat 1.834168

Next, we run two WLS regressions on the original series, using the correct weights, h; = 2? (again, one
with the homoskedasticity-only standard errors and one with the White heteroskedasticity-robust standard
errors). Notice that because now z; can be negative we need to take their absolute values for weighting.
As expected, the results are exactly the same as in the previous ‘transformed’ case.

Dependent Variable: Y

Dependent Variable: ¥ Method: Least Squares
Method: Least Squares Date: 0300717 Time: 16:26
Date: 030717 Time: 16:25 Sample: 1100
Sample: 1100 Included observations: 100
Included observations: 100 Weighting series: @ABS(X)
Weighting series: @ABS(X) Weight type: Standard deviation (average scaling)
Weight type: Standard deviation (average scaling) White heteroskedasticity-consistent standard errors & covariance
Variable Coefficient Std. Error t-Statistic Prob. Variable Coefficient Std. Error t-Statistic Prob.
X 1.026907 0.0985879 10.38549 0.0000 X 1.026907 0.098879 10.38549 0.0000
Weighted Statistics Weighted Statistics
R-squared 0.511002 Mean dependentvar -0.015143 R-squared 0.511002 Mean dependentvar -0.015143
Adjusted R-squared 0511002 S.D. dependentvar 0.111590  Adjusted R-squared 0.511002 S.D. dependentvar 0.111580
5.E. of regression 0.077913  Akaike info criterion -2 256509 5.E. of regression 0.077913 Akaike info criterion -2 256508
Sum squared resid 0600966 Schwarz criterion -2.230458 Sum squared resid 0600966 Schwarz criterion -2.230458
Log likelihood 113.8255 Hannan-Quinn criter. -2.245966 Log likelihood 113.8255 Hannan-Quinn criter. -2. 245966
Durbin-Watson stat 2074588 Weighted mean dep. 0.015349 Durbin-Watson stat 2074588 Weighted mean dep. 0.015349
Unweighted Statistics Unweighted Statistics

R-squared 0498427 Mean dependentvar -0.218837 R-squared 0498427 Mean dependentvar -0.218837
Adjusted R-squared 0498427 3S.D. dependentvar 1.358004  Adjusted R-squared 0498427 S.D. dependentvar 1.358004
S.E. of regression 0962471 Sum squared resid 91.70878 S.E. of regression 0962471 Sum squared resid 91.70878
Durbin-Watson stat 2103202 Durbin-Watson stat 2103202




(iii) Now estimate B by WLS using the (incorrect) heteroskedasticity model o?

0_2

=%
error of this estimate in three ways: by the WLS expression corresponding to this (incorrect) model, by
the White method for OLS on the (incorrectly) weighted data, and also by deriving the correct formula for

the standard deviation of WLS with this incorrect model for the variance.

Compute the standard

We start with constructing the (incorrectly) transformed series:

— k%
= Yilq, €T

*%
&;

* %

R _ 2
Y; =Ty =X

i =&y,

so that now the transformed error terms e;* are heteroskedastic. To have a reference to the previous
subpoint, we run four regressions: two OLS ones and two WLS ones, each time with one with the
homoskedasticity-only standard errors and one with the White heteroskedasticity-robust standard errors.
Now the not-heteroskedasticity-robustified regressions (OLS and WLS) give the same results, and so do
both (OLS and WLS) with the White correction.

Dependent Variable: ¥_STARZ

Method: Least Squares

Date: 03/07M17 Time: 15:20

Sample: 1100

Included observations: 100

White heteroskedasticity-consistent standard errors & covariance

Dependent Variable: Y_STAR2
Method: Least Squares

Date: 03/07M17 Time: 15:20
Sample: 1100

Included observations: 100

Variable Coefficient Std. Error t-Statistic Prob. Variable Coeflicient Std. Error t-Statistic Prob.

X_STAR2 0.913154 0.089559 1019616 0.0000 X_STAR2 0.913154 0.229583 3.977439 0.0001
R-squared 0400692 Mean dependentvar 0.982115 R-squared 0.400692 Mean dependent var 0982115
Adjusted R-squared 0400692 S.D.dependentvar 2.064220 Adjusted R-sguared 0.400692 S.D. dependentvar 2064220
S.E. of regression 1598016 Akaike info criterion 3785353 SE. ofregression 1.598016 Akaike info criterion 3785353
Sum squared resid 252.8120 Schwarz criterion 3.811405 Sum squared resid 252.8120 Schwarz criterion 3.511405
Log likelihood -188.2676 Hannan-Quinn criter. 3795897 Loglikelihood -188.2676 Hannan-Cluinn criter. 3.795897
Durbin-Watson stat 2032602 Durbin-Watson stat 2.032602

Dependent Variable: ¥

Dependent Variable: ¥ Method: Least Squares
Method: Least Squares Date: 03/07M17 Time: 16:38
Date: 03/07M17 Time: 16:38 Sample: 1100
Sample: 1100 Included observations: 100
Incl_ude_d obse_rvations: 100 Weighting series: 1/@ABS(X)
We!ghtmg series: 1!@.‘\88_()(_} _ Weight type: Standard deviation (average scaling)
Weight type: Standard deviation (average scaling) ‘White heteroskedasticity-consistent standard errors & covariance

Variable Coeflicient Std. Error t-Statistic Prob. ‘Variable Coefficient Std. Error t-Statistic Prob.

X 0913154 0.089559 10.19616 0.0000 X 0.913154 0.229583 3.977439 0.0001
Weighted Statistics Weighted Statistics
R-squared 0.496523 Mean dependentvar -0.271670  R-squared 0.496523 Mean dependentvar -0.271670
Adjusted R-squared 0.496523 S.D. dependentvar 2268110  Adjusted R-squared 0.496523 S.D. dependentvar 2268110
SE ofregression_ 1.595508 Akaike info_crit_erion 3782211 SE. of regression 1.595508 Akaike info criterion aTezzn
Sum squared resid 252.0189  Schwarz criterion 3.808263 Sum squared resid 252.0189 Schwarz criterion 3.808263
Log likelihood -188.1106 Hannan-Quinn criter. 3.792755  Log likelihood -188.1106 Hannan-Quinn criter. 3792755
Durbin-Watson stat 2135345 Weighted mean dep. -0.401395  Durbin-Watson stat 2135345 Weighted mean dep. -0.401395
Unweighted Statistics Unweighted Statistics

R-squared 0.497303 Mean dependentvar -0.218837 R-squared 0.497303 Mean dependentvar -0.218837
Adjusted R-squared 0.497303  S.D. dependentvar 1.358004  Adjusted R-squared 0.497303 S.D. dependent var 1.350004
S.E. ofregression 0.963549 Sum squared resid 91.91425 SE. ofregression 0963549 Sum squared resid 91.91425
Durbin-Watson stat 2.094606 Durbin-Watson stat 2.094606

What is left is to derive the correct formula for the standard deviation of WLS under the incorrect model
for the variance. Recall that in the one-variable (and without a constant term) setting we have

Z” TiYi
i=1 h;
n xT
i=1Th,;

VS

Bwrs =

s

so with the weights h; = % and using y; = Bx; + €;, we arrive at

Z?:l x;l
Doy w3} (Bri +€4)
4

Bwrs =




Because Py s is unbiased, i.e. E (BWLS’ :17) = f3, the variance of Sy g is

Var (BWLS‘ x) =E (BWLS —-E (BWLS‘ x))Q

3 2
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(Z?:l x?)Q
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where in (*) we use the conditioning on z and the fact that ¢; are mutually independent, in (xx*) the fact
that E(g;|z;) = 0 and in (* * %) that Var(g;|z;) = o222 = 22

For the simulated z; we obtain Y, z} = 318.3814 and )., 2% = 9962.1182, hence

Var (BWLS‘ x) _ (9962.1182

T 0.0983
318.3814)2 ’

so that the standard deviation of BWLS is v/0.0983 ~ 0.3135. This shows that the standard error from
the heteroskedasticity-robust regressions of 0.22 is still estimated with some error.

(iv) Perform 1000 simulations, where the n = 1000 values of x; remain the same over all simulations but the 100
values of n; are different drawings from the N'(0,z2) distributions and where the values of y; = x;+n; differ
accordingly between the simulations. Determine the sample standard deviations over the 1000 simulations
of the three estimators of B in (i)-(iii), that is, OLS, WLS (with correct weights), and WLS (with incorrect
weights).

Figure 1 present an EViews code used for this simulation experiment (and also for the previous compu-
tations). The standard deviations of the obtained series of 1000 estimates for 5 using the required three
methods are as follows:

St.dev(Bors) = 0.1799,
St.dev(Bw Ls.correct) = 0.0972,
St~deV(BWLS,incorrect) = 0.3155.

Notice that the last value is almost identical to the theoretical one, obtained in (7).

(v) Compare the three sample standard deviations in (iv) with the estimated standard errors in (i)-(iii), and
comment on the outcomes. Which standard errors are reliable, and which ones are not?

The table below summarises the required results. Clearly, WLS with the correctly specified model for the
variances gives reliable standard errors. OLS and WLS with the incorrect weighting greatly underestimate
the variability of the estimator for 8 when the heteroskedasticity-robust standard errors are not used.
When the latter are applied the standard error for both methods improve considerably, but still are
estimated with some error.

Single estimation st. errors

Method Homosked. only Heterosked. robust Simulation st. deviations
OLS 0.0956 0.1597 0.1799
WLS correct 0.0989 0.0989 0.0972
WLS incorrect 0.0895 0.2296 0.3155




wicreate(wf=C1)u 100
mdseed 123456
IN =100

series x=nrnd
series u=nrnd
series eta=x"u
seriesy=x+eta

(i)
equation eq.ls yx
equation eq_white l1s(cov=white) y x

(i)

series ¥_star =

series y_star =y

equation eq_wls_true.ls y_starx_star

equation eq_wils_true_white Is(cov=white) y_star x_star

standard deviation (average scaling), weighting series x
equation eq_wls_true_modells(w=@abs(x), wiype=stdev, wscale=avg) y x
equation eq_wls_true_model_white Is(w=@abs(x), wiype=stdev, wscale=avg,cov=white) y x

(iii)
series ¥_star2 = x'x
series y_star2 = y*x
equation eq_wls_false.ls y_star2 x_star2
equation eq_wls_false_white Is{cov=white) y_star2 x_star2
equation eq_wls_false_maodells(w="1/@abs(x), wlype=stdev, wscale=avg)yx
equation eq_wls_false_model_white Is(w=1/@abs(x), wype=stdev, wscale=avg,cov=white) y x

series xd =4
scalar sum_x4 = @sum(x4)
series x8 = "8
scalar sum_x8 = @sum(xa)

(iv)
IM = 1000
matrix(!M,1) betas_ols
matrix(!M, 1) betas_wls_true
matrix(!M, 1) betas_wls_false

for li=1to IM
series u=nrnd
series eta=x"u
seriesy=x+eta

equation eq_sim.ls yx
betas_ols(li,1) = eq_sim.@coefs(1)

series y_star =y
equation eq_wls_true_sim.Is y_star x_star
betas_wls_true(li,1) = eq_wls_true_sim.@coefs(1)

series y_star2 = y*x

equation eq_wils_false_sim.ls y_star2 x_star2

betas_wls_false(li,1) = eg_wls_false_sim.@coefs(1)
next

scalar sd_ols = @stdev(betas_ols)
scalar sd_wls_true = @stdev(betas_wls_true)
scalar sd_wls_false = @stdev(betas_wils_false)

Figure 1: EViews code example for Computer Exercise 1.
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Exercise 2

Consider the bank wages data bankwages.wf1 with the regression model

Yi = B1 + Pox; + B3Dgi + BaDpi + Bs Do + BeD3i + €4,

where y; is the logarithm of yearly wage, x; is the number of years of education, D, is a gender dummy (1 for
males, 0 for females), and D,, is a minority dummy (1 for minorities, 0 otherwise). Administration is taken as
reference category and Dy and D3 are dummy variables (Dy = 1 for individuals with a custodial job and Dy = 0

otherwise, and D3 = 1 for individuals with a management position and D3 = 0 otherwise).

(i) Consider the following multiplicative model for the variances:

Estimate the nine parameters (siz regression parameters and three variance parameters) by (two-step)
FWLS. Obtain the estimates of the standard deviations per job category and interpret the results.

To apply (two-step) FWLS, we start by estimating the regression and the model for variances by OLS.
For the latter we consider as the explained variable log(¢?), where &; are the OLS residuals of from the

first regression.

Dependent Variable: LOGSALARY

Method: Least Squares

3

i

2 _ ]E[EQ] — 1 tr2D2+v3Ds

Sample: 1474
Included observations: 474 Dependent Variable: LOG_RES_OLD2
Method: Least Squares
Variable Coefficient Std. Error 1-Statistic Prob Sample: 1474
Included observations: 474
c 9 574694 0.054218 176.5965 0.0000
EDUC 0.044192 0.004285 1031317 0.0000 Variable Coefiicient Std. Error t-Statistic Prob
GENDER 0.178340 0.020962 8.507685 0.0000
MINORITY -0.074858 0.022459  -3.333133 0.0009 c -4.733237 0123460 -38.33819 0.0000
DUMJCATZ 0.170360 0.043494 3.916891 0.0001 DUMJCATZ -0.289197 0.469221  -0.616335 0.5380
DUMJCATZ 0.539075 0.030213 17.84248 0.0000 DUMJCAT3 0.460492 0.284800 1616892 0.1066
R-squared 0760775 Mean dependentvar 10.35679 R-squared 0.006882 Mean dependent var -4.668104
Adjusted R-squared 0758219 S.D. dependentvar 0.397334 Adjusted R-squared 0.002665 S.D. dependent var 2355372
S.E. ofregression 0195374 Akaike info criterion -0.415222 S.E. ofregression 2352231  Akaike info criterion 4554914
Sum squared resid 17.86407  Schwarz criterion -0.362549 Sum squared resid 2606.038 Schwarz criterion 4581251
Log likelihood 104.4077 Hannan-Quinn criter. -0.394507 Log likelihood -1076.515 Hannan-Quinn criter. 4565272
F-statistic 207.6627 Durbin-Watson stat 1.886057 F-statistic 1.632002 Durbin-Watson stat 1.944100
Prob(F-statistic) 0.000000 Prob{F-statistic) 0196641

Keeping in mind the correction factor for multiplicative models (assuming that e; has a normal distribu-

tion), we estimate the variances as

so that

67 = exp(1.27 + 41 + 42 Da; + 43 D),

Q
(V)
Il

exp(1.27 + 1),
exp(1.27 4+ 41 + A2),
exp(1.27 + 41 + 43).-

Plugging in the obtained estimates, we obtain:

67 = exp(1.27 — 4.7332) = 0.0313,

g

o

2
2

2
3

which gives us the required standard deviations per job category:

As expected, the standard deviation is smallest for custodial jobs and it is largest for management jobs.
Notice, however, that the estimates 45 and 43 are not significant, indicating that the homoskedasticity of

the error cannot be rejected.

= /62 =0.1769,
= /62 =0.1532,
= /62 = 0.2228.

exp(1.27 — 4.7332 — 0.2892) = 0.0235,
= exp(1.27 — 4.7332 + 0.4605) = 0.0497,

Next, we run WLS with weights equal to the inverse of the fitted standard deviation.
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Dependent Variable: LOGSALARY

Method: Least Squares

Sample: 1474

Included observations: 474

Weighting series: 1/STDEV_FITTED

Weight type: Inverse standard deviation (EViews default scaling)

Variable Coefficient Std. Error t-Statistic Prob.
c 9.594902 0.05211 184.0539 0.0000
EDUC 0.042693 0.004123 10.35597 0.0000
GENDER 0.178160 0.020345 8.757099 0.0000
MINORITY -0.078365 0.021330  -3.674013 0.0003
DUMJICATZ 0.167288 0.037542 4456083 0.0000
DUMICATZ 0.545052 0.032882 16.57581 0.0000

Weighted Statistics

R-squared 0.716557 MWean dependentvar 10.33140
Adjusted R-squared 0.713529 3S.D. dependentvar 0.778134
S.E. of regression 0.191905 Akaike info criterion -0.451050
Sum squared resid 17.23837  Schwarz criterion -0.398377
Log likelihood 112.8989 Hannan-Quinn criter. -0.430334
F-statistic 236.6254 Durbin-Watson stat 1.886442
Prob(F-statistic) 0.000000 Weighted mean dep 10.31027

Unweighted Statistics

R-squared 0.760690 MWean dependentvar 10.35679
Adjusted R-squared 0.758133 S5.0D. dependentvar 0.397334
S.E. of regression 0.195409 Sum squared resid 17.87038
Durbin-\Watson stat 1.891828

We can see that the outcomes are quite close to those of OLS, so that the effect of heteroskedasticity
is relatively small (which is in line with the fact that we did not reject the null of homoskedastic error
term).

(ii) Next, adjust the model for the variances as follows:
E[e}] = y1 + 72Dz + v3D3 + yazi + V577,

i.e. the model for the variances is additive and contains also effects of the level of education.
Estimate the eleven parameters (siz regression parameters and five variance parameters) by (two-step)
FWLS and compare the outcomes with the results in (i).

Dependent Variable: LOGSALARY

Method: Least Squares

Sample: 1474

Included observations: 474

Weighting series: 1/STDEV_FITTED_EDU

Weight type: Inverse standard deviation (EViews default scaling)

Variable Coefficient Std. Error t-Statistic Prob.

C 9632344 0.047967 2008111 0.0000

EDUC 0.039311 0.003885 10.11958 0.0000

GENDER 0.181978 0.020253 8.985090 0.0000

Dependent Variable: RES_0LD2 MINCRITY -0.067395 0.020538 -3.281424 0.0011
Method: Least Squares DUMICAT2 0178342 0032217 5535650  0.0000
Sample: 1474 DUMICAT3 0559036 0032881  17.00192  0.0000

Included observations: 474
Weighted Statistics

Variable Coefficient Std. Error t-Statistic Prob.
R-squared 0.720268 Mean dependentvar 10.32242
C 0.016276 0053297 0305388 07602  Adjusted R-squared 0717280 S.D.dependentvar 1.568529
DUMJCAT2 -0.012381 0.013621  -0.908991 0.3638 S.E. ofregression 0.188042  Akaike info criterion -0.491719
DUMICAT3 0.008538 0.011506 0.742033 0.4584 Sum squared resid 16.54840  Schwarz criterion -0.429045
EDUC 0.000506 0.008329 0.060741 0.9516 Log likelihood 1225373 Hannan-Quinn criter. -0.471003
EDUC"2 7.24E-05 0.000325 0.223071 0.8236 F-statistic 241.0064 Durbin-Watson stat 1.908192
Prob{F-statistic) 0.000000 Weighted mean dep. 10.29357
R-squared 0.025792 MWean dependentvar 0.037688
Adjusted R-squared 0.017483 S.D. dependentvar 0.065791 Unweighted Statistics
S.E. ofregression 0.065213 Akaike info criterion -2.611818
Sum squared resid 1.094549 Schwarz criterion -2 567921 R-squared 0.758814 Mean dependentvar 10.35679
Log likelinood 624.0003 Hannan-Quinn criter -2594552  Adjusted R-squared 0.757248  8.D. dependentvar 0.397334
F-statistic 3.104203 Durbin-Watson stat 1.902122 S.E. ofregression 0.195766 Sum squared resid 17.93579
Prob{F-statistic) 0.015377 Durbin-Watson stat 1.901450

With the additive model we now estimate the variances as
67 =41 +42Da; + A3 D3; + Auzi + F527,
so that
61 =1 + Aaxi + 527,
= 0.0163 + 0.0005z; + Te-05z7,
05 =% + Y2 + Y4z + @59512
=0.0163 — 0.0124 + 0.0005x; + 7e—05xf,
63 =41+ A3 + Jazi + A577
0.0163 + 0.0085 + 0.0005x; + 7e—05x?.
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Notice that this time we cannot obtain standard deviations per job category, because the estimates of
standard deviation are individual specific (depending on the education level). However, the estimates

A2—5 are not significant, indicating that again the homoskedasticity of the error cannot be rejected.

Below we sum up the three sets of standard errors.

Standard errors

Variable B OLS FWLSnoxz; FWLS with z;
C 9.574694 0.054218 0.052131 0.047967
EDUC 0.044192  0.004285 0.004123 0.003885
GENDER 0.178340  0.020962 0.020345 0.020253
MINORITY  -0.074858  0.022459 0.021330 0.020538
DUMJCAT2  0.170360 0.043494 0.037542 0.032217
DUMJCAT3  0.539075 0.030213 0.032882 0.032881

We can see that changing of the model for heteroskedasticity does not have a big impact on the results,
which are similar to those from (7). Nevertheless, the “additive” FWLS estimator including the education
effect is somewhat more accurate than the “multiplicative”, job-category-only FWLS estimator, which is
a bit more accurate than the OLS one.

Check that the data in the data file are sorted with increasing values of x;. Inspect the histogram of x;
and choose two subsamples to perform the Goldfeld-Quandt test® on possible heteroskedasticity due to the
variable x;.

(iii)

EDUC EDUC
2 200 —
20
160 -|
18 4
16 = 120
5
2
5
14 =
s
12 ] w 80 -
10
40
B H
B e e (7 5 S ) Y 0 s 1
50 100 150 200 250 300 350 400 450 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Based on the plots of z; above we choose x; < 12 as the first group and z; >= 15 as the second group, so
that both groups are large enough and so that there are some observations dropped with 12 < z; < 15 (a
few ones with z; = 14). This results in ny = 241, ny = 225 and n3 = n — ny — ny = 8%,

Dependent Variable: LOGSALARY
Method: Least Squares

Sample: 1474 |F EDUC<=12
Included obsernvations: 243

Dependent Variable: LOGSALARY
Method: Least Squares

Sample: 1474 IF EDUC==15
Included observations: 225

Variable Coefficient  Std. Error  t-Statistic Prob Variable Coefficient  Std. Error  t-Siatistic Prob.
o 9766853 0075173 1299256  0.0000 c 5086274 0213577 4207501  0.0000
EDUC 0.026684  0.008587  4.050890  0.0001 EDUC 0023024 0014012 5093834  0.0000
GENDER 0172142 0025703  6.607433  0.0000 GENDER 0163522 0034615 4723956  0.0000
MINORITY -0.069208  0.024714  -2800447  0.0055 MINORITY -0.080841  0.040897 -1.976695  0.0493
DUMJCAT2 0172762  0.039865  4.333720  0.0000 DUNICATZ 0230489 0221845 1038985 03000
DUMJCAT3 0.802059  0.166775  4.809218  0.0000 DUMJICAT3 0448859  0.042767  10.49538  0.0000
R-squared 0.379846 Mean dependentvar 1012726 R-squared 0721045 Mean dependent var 10.60481
Adjusted R-squared 0366762  S.D. dependent var 0208856 | pgjusted R-squared 0714676 S.D. dependentvar 0.409211
SE ofregression 0164608 Akaike info criterion -0.746115 SE ofregression 0218583 Akaike info criterion 0176998
Sum squared resid 6421724  Schwarz criterion -0.659867  sum squared resid 1046349  Schwarz criterion -0.085902
Log likelihood 96.65298  Hannan-Quinn criter. S0T11375 | og likelihood 2591226 Hannan-Quinn criter -0.140231
F-statistic 28.03258  Durbin-Watson stat 2023838 | Fostafistic 1132145 Durbin-Watson stat 1739112
Prob(F-statistic) 0.000000 Prob(F-statistic) 0.000000

Running the original regression (with k& = 5) on both subsamples yields SSR; = 6.4217 and SSRy =
10.4635, so that we obtain

b mef _ 104635 241-5
o % T 64217 225—-5

3Since the Goldfeld-Quandt has not been in the lecture slides, it will be explained during the tutorial.
4You can use the commands smpl if educ<=12, scalar nl = @obssmpl and smpl if educ>=15, scalar n2 = Qobssmpl in
EViews.
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(with the exact values in EViews, with the above ones it is 1.7479), which under the null of homosekdas-
ticity follows the F'(ne = k,ny — k) = F(225 — 5,241 — 5) = F'(220, 236) distribution. The corresponding
p-value is 9.76E-06 so virtually 0. Hence, at any reasonable significance level we reject the null of ho-
moskedasticity and conclude that there is evidence for heteroskedasticy due to the education level.

(iv) Perform the Breusch—Pagan test on heteroskedasticity, using the specified model for the variances.

We still use the additive model for the variances from (ii), i.e. we consider R? from the auxiliary regression
from (i)
& = m + 72Dz + ¥3D3 + yawi + 527 + 1.

With R? = 0.0258, the obtained value of the LM statistic is
LM = nR? = 474 -0.0258 = 12.2255,

with the corresponding p-value of 0.0157 (we use the x? distribution). Hence, at the standard significance
level of 5% we can reject the null of homoskedasticity.

Alternatively, we can run the built-in test in EViews, where we need to adjust the regressors in the test
specification box, which leads to the same results.

Heteroskedasticity Test. Breusch-Pagan-Godfrey

F-statistic 3.104203  Prob. F(4,489) 0.0154
0Obs*R-squared 12.22552 Prob. Chi-Square(4) 0.0158
Scaled explained S5 1812103 Prob. Chi-Square(4) 0.0012

Test Equation:

Dependent Variable: RESID*2
Method: Least Squares
Sample: 1474

Included obserations: 474

Variable Coefficient Std. Error t-Statistic Prob
c 0.016276 0.053297 0.305388 0.7602
DUMICATZ -0.012381 0.013621  -0.908991 0.3638
DUMJCAT3 0.008538 0.011506 0742033 0.4584
EDUC 0.000508 0.008329 0.060741 0.9516
EDUC"2 7.24E-05 0.000325 0.223071 0.8236
R-squared 0.025792 Mean dependent var 0.037688
Adjusted R-squared 0.017483 SD dependentvar 0.065781
S.E. of regression 0.065213 Akaike info criterion -2.611815
Sum squared resid 1994549 Schwarz criterion -2567921
Log likelihood 624.0003 Hannan-Quinn criter. -2.594552
F-statistic 3.104203 Durbin-Watson stat 1.902122

Prob(F-statistic) 0.015377

(v) Also perform the White test on heteroskedasticity.

The results for the White test without and with cross terms, respectively, are shown below.

Heteroskedasticity Test White

F-statistic 2117199 Prob. F(14,459) 0.0101
0Obs*R-squared 28.75268 Prob. Chi-Square(14) 0.0113
Scaled explained 55 4261808 Prob. Chi-Square(14) 0.0001

Test Equation
Dependent Variable: RESID*2
Method: Least Squares

Heteroskedasticity Test: White Sample: 1474
Included obsernvations: 474
F-statistic 2 656429 Prob. F(5.468) 0.0221 Collinear test regressors dropped from specification
Obs*R-squared 13.08118 Prob. Chi-Square(d) 0.0226
Scaled explained 88 19.38931 Prob. Chi-3quare(s) 0.0016 ¢ Variable Coefficient Std. Error t-Statistic Prob
c 0.131454 0.071827 1.830155 0.0679
TestEquation EDUC2 0.000884 0.000492 1.797828 0.0729
Dependent Variable: RESID"2 EDUC*GENDER 0.002489 0.003336 0.746059 0.4560
Method: Least Squares EDUC™MINORITY -0.002532 0.003481  -0.727354 0.4674
Sample: 1474 EDUC*DUMJCAT2 0.004829 0.006653 0.725860 0.4683
Included observations: 474 EDUC*DUMJCAT3 -0.018342 0.006958 -2.838092 0.0087
EDUC -0.018886 0.011890  -1.588350 0.1129
Variable Coefficient Std. Error t-Statistic Prob GENDER*2 -0.037480 0044811  -0836627 0.4032

GENDER*™MINORITY  -0.002821 0.016624  -0.169688 0.8653

c 0.020947 0.009210 2135169 0.0333 GEMDER*DUMJCATZ  -0.062739 0.074654  -0.840391 04011
EDUC2 9.53E-05 5.60E-05 1702415 0.0893 GENDER"DUMJCAT3 0.021593 0.026254 0.822459 04112
GENDER"2 -0.001069 0.007027  -0.132050 0.8792 MINORITY"2 0.021593 0.044828 0.431694 0.6303
MIMORITY"2 -0.006732 0007498  -0.897810 0.3697 MINORITY*DUMJCATZ  0.022435 0.029892 0750541 0.4533
DUMJCAT2*2 -0.010073 0.014419  -0.898559 0.4852 MINORITY*DUMJCATZ  0.081214 0.037021 2193140 0.0288
DUMJCAT22 0.006985 0.010522 0.659719 0.5008 DUMJCAT32 0273542 0.109895 2489112 0.0132
R-squared 0.027597 Mean dependentvar 0.037688 :R-squared 0.060660 Mean dependentvar 0037688
Adjusted R-squared 0017208 S.D dependentvar 0.065791 Adjusted R-squared 0.032009 S.D.dependentvar 0.065791
S.E. of regression 0.065222 Akaike info criterion -2.609451 S.E. ofregression 0.064729 Akaike info criterion -2 60B06S
Sum squared resid 1.990853 Schwarz criterion -2 556777 Sum squared resid 1.823163 Schwarz criterion -2.474384
Log likelihood §24.4398 Hannan-Quinn criter. -2.588735  Loglikelihood 632.6381 Hannan-Quinn criter. -2.554279
F-statistic 2.656429 Durbin-Watson stat 1.910577  F-statistic 2117198  Durbin-Watson stat 1953388
Prob(F-statistic) 0.022111 Prob{F-statistic) 0.010144

The LM statistic for the White test without cross terms is equal to 13.0811 and under the null it follows
the x2 distribution. The corresponding p-value is 0.0226. For the White test with cross terms we obtain
LM = 28.7527, which follows the x?, distribution under the null and yields the p-value of 0.0113. Either
way we can reject the null of homoskedasticity at the standard significance level of 5% .
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(vi) Comment on the similarities and differences between the test outcomes in (i1i)—(v).

The main similarity is that all three tests rejected the null of homoskedasticity, hence we have strong
grounds to claim that the variance of the unobserved factors changes across different segments of the
analysed data.

A difference is the exact level of the p-value: some tests may have more power to detect heteroskedasticity
for this dataset (and reject Hy more clearly with a lower p-value).

Another difference is that the Goldfeld-Quandt test assumes that the errors are normally distributed,
whereas the Breusch-Pagan and White tests do not rely on this assumption.
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