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1 Summary

• Gauss-Markov assumptions (for multiple linear regression model):

MLR.1 (linearity in parameters): The model is

yi = β0 + β1xi1 + · · ·+ βkxik + ui,

where β0, . . . , βk are unknown parameters (constants) and ui is an unobserved random error term.

MLR.2 (random sampling): We have a random sample of n independent observations

{(xi1, . . . , xik, yi) : i = 1, . . . , n} .

MLR.3 (no perfect collinearity): No exact linear relationships between variables (and none of the inde-
pendent variables is constant).

MLR.4 (zero conditional mean): E(ui|xi1, . . . , xik) = 0.

MLR.5 (homoskedasticity): Var(ui|xi1, . . . , xik) = σ2.

• Heteroskedasticity of Unknown Form: Heteroskedasticity that may depend on the explanatory vari-
ables in an unknown, arbitrary fashion.

• Heteroskedasticity-Robust Standard Error: (White standard errors) A standard error that is
(asymptotically) robust to heteroskedasticity of unknown form. Can be obtained as the square root
of a diagonal element of

V̂ar(β̂OLS) = (X ′X)
−1
X ′Ω̂X (X ′X)

−1
,

where Ω̂ = diag(û21, . . . , û
2
n), the diagonal matrix with squared OLS residuals on the diagonal.

• Heteroskedasticity-Robust Statistic: A statistic that is (asymptotically) robust to heteroskedasticity
of unknown form. E.g. t, F , LM statistics.

• Breusch-Pagan Test: (LM test) A test for heteroskedasticity where the squared OLS residuals are
regressed on exogenous variables – often (a subset of) the explanatory variables in the model, their
squares and/or cross terms.

• White Test (without cross terms): A special case of Breusch-Pagan Test, which involves regressing
the squared OLS residuals on the squared explanatory variables.

• Weighted Least Squares (WLS) Estimator: An estimator used to adjust for a known form of
heteroskedasticity, where each squared residual is weighted by the inverse of the variance of the error.

• Feasible WLS (FWLS) Estimator: An estimator used to adjust for an unknown form of heteroskedas-
ticity, where variance parameters are unknown and therefore must first be estimated.
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2 Extra Topics

2.1 Goldfeld–Quandt (1965) test

In a nutshell

• Idea: If the error variances are homoskedastic (equal across observations), then the variance for
one part of the sample will be the same as the variance for another part of the sample.

• Based on the ratio of variances.

• Test for the equality of error variances using an F -test on the ratio of two variances.

• Key assumption: independent and normally distributed error terms.

• Divide the sample of into three parts, then discard the middle observations.

• Estimate the model for each of the two other sets of observations and compute the corresponding
residual variances.

• It requires that the data can be ordered with nondecreasing variance.

• The ordered data set is split in three groups:

1. the first group consists of the first n1 observations (with variance σ2
1);

2. the second group of the last n2 observations (with variance σ2
2);

3. the third group of the remaining n3 = n−n1−n2 observations in the middle. This last group is left
out of the analysis, to obtain a sharper contrast between the variances in the first and second group.

• The null hypothesis is that the variance is constant for all observations, and the alternative is that the
variance increases.

• Hence, the null and alternative hypotheses are

H0 : σ2
1 = σ2

2 ,

H1 : σ2
1 < σ2

2 .

• Apply OLS to groups 1 and 2 separately, with resulting sums of squared residuals SSR1 and SSR2

respectively and estimated variances s21 = SSR1

n1−k and s22 = SSR2

n2−k .

• Under the assumption of independently and normally distributed error terms:

SSRj
σ2
j

∼ χ2
nj−k, j = 1, 2,

and these two statistics are independent.

• Therefore:
SSR2

(n2−k)σ2
2

SSR1

(n1−k)σ2
1

=

s22
σ2
2

s21
σ2
1

∼ F (n2 − k, n1 − k).

• So, under the null hypothesis of equal variances, the test statistic

F =
s22
s21
∼ F (n2 − k, n1 − k).

The null hypothesis is rejected in favour of the alternative if F takes large values.

• There exists no generally accepted rule to choose the number n3 of excluded middle observations.

– If the variance changes only at a single break-point, then it would be optimal to select the two groups
accordingly and to take n3 = 0.

– On the other hand, if nearly all variances are equal and only a few first observations have smaller
variance and a few last ones have larger variance, then it would be best to take n3 large.

– In practice one uses rules of thumb: e.g. n3 = n
5 if the sample size n is small and n3 = n

3 if n is large.
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2.2 Correction factor for multiplicative models

Recall that we distinguish two models for heteroskedasticity in the context of FWLS:

• multiplicative heteroskedasticity model

Var(ui|xi) = σ2 exp (δ0 + δ1xi1 + · · ·+ δkxik) ;

• additive heteroskedasticity model

Var(ui|xi) = δ0 + δ1xi1 + · · ·+ δkxik.

The latter has, however, a disadvantage that (estimate of) Var(ui|xi) can be negative, so we mainly focus on
the former one.

Notice that in the multiplicative model we have

Var(ui|xi)
E(ui|xi)=0

= E(u2i |xi)
= σ2 exp (δ0 + δ1xi1 + · · ·+ δkxik) ,

so it is equivalent with

u2i = σ2 exp (δ0 + δ1xi1 + · · ·+ δkxik) vi,

vi =
u2i

E(u2i |xi)
(⇐ mean 1 random variable)

Hence, we consider
log(u2i ) = α0 + δ1xi1 + · · ·+ δkxik + ηi,

where ηi is the error term
ηi = log(vi)− E(log(vi))

and α0 is a constant term
α0 = log(σ2) + δ0 + E(log(vi)).

Hence, the coefficient δ0 of the constant term is not consistently estimated by α̂0 from OLS. To obtain its
consistent estimate a correction factor is needed so δ0 is then estimated by

δ̂0 + a,

where, if the errors are normally distributed (ui|xi ∼ N (0, σ2
i )),

a = −E[log(χ2
1)] ≈ 1.27.

We will see how this works in Computer Exercise 2(i)1.

1Note, however, that a consistent estimator of δ0 is not needed, because exp(δ̂0) is merely a constant scaling factor that does
not affect the FWLS estimator.
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3 Warm-up Exercises

3.1 W8/1

Which of the following are consequences of heteroskedasticity?

(i) The OLS estimators, β̂j, are inconsistent.

The homoskedasticity assumption played no role in showing that the OLS estimator is consistent. Indeed,
even with Var(u|X) = Ω 6= σ2I we have for β̂OLS = β + (X ′X)

−1
X ′u:

plim
(
β̂OLS

)
= β + plim

(
X ′X

n

)−1
plim

(
X ′u

n

)

= β + plim

(
1

n

n∑
i=1

xix
′
i

)−1
plim

(
1

n

n∑
i=1

xiui

)
= β + E(X ′X)−1 E(X ′u)︸ ︷︷ ︸

=E(XE(u|X))=0

,

so the OLS estimator is still consistent.

(ii) The usual (homoskedasticity-only) F statistic no longer has an F distribution.

Now, we have

Var(β̂OLS) = (X ′X)
−1
X ′ΩX (X ′X)

−1
,

so the usual expression

σ2 (X ′X)
−1

for the variance does not apply anymore. The latter expression is biased, which makes the standard
(homoskedasticity-only) F test (and t test) invalid. One should use a heteroskedasticity-robust F (and t)
statistic, based on heteroskedasticity-robust standard errors.

(iii) The OLS estimators are no longer BLUE.

As heteroskedasticity is a violation of the Gauss-Markov assumptions, the OLS estimator is no longer
BLUE: it is still linear, unbiased, but not “best” in a sense that it is not efficient. Intuitively, the
inefficiency of the OLS estimator under heteroskedasticity can be contributed to the fact that observations
with low variance are likely to convey more information about the parameters than observations with high
variance, and so the former should be given more weight in an efficient estimator (but all are weighted
equally).

3.2 W8/2

Consider a linear model to explain monthly beer consumption:

beer = β0 + β1inc+ β2price+ β3educ+ β4female+ u,

E(u|inc, price, educ, female) = 0,

Var(u|inc, price, educ, female) = σ2inc2.

Write the transformed equation that has a homoskedastic error term.

With Var(u|inc, price, educ, female) = σ2inc2 we have h(x) = inc2, where h(x) is a function of the explanatory
variables that determines the heteroskedasticity (defined as Var(u|x) = σ2h(x)). Therefore,

√
h(x) = inc, and

so the transformed equation is obtained by dividing the original equation by inc:

beer

inc
= β0

1

inc
+ β1

inc

inc
+ β2

price

inc
+ β3

educ

inc
+ β4

female

inc
+

u

inc

= β0
1

inc
+ β1 + β2

price

inc
+ β3

educ

inc
+ β4

female

inc
+

u

inc
.

Notice that β1, which is the slope on inc in the original model, is now a constant in the transformed equation.
This is simply a consequence of the form of the heteroskedasticity and the functional forms of the explanatory
variables in the original equation.
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3.3 Small computer exercise

Using the data in the file earnings.wf12 run the regression

yi = β1d1i + β2d2i + β3d3i + ui (1)

where dki, k = 1, 2, 3, are dummy variables for three age groups. Then test the null hypothesis that E(u2i ) = σ2

against the alternative that
E(u2i ) = γ1d1i + γ2d2i + γ3d3i.

Report p-values for both F and nR2 tests.

Recall that tests for homoskedasticity are constructed as follows:

H0 : homoskedasticity,

H1 : not H0, i.e. heteroskedasticity.

The easiest way to perform the required test is simply to regress the squared residuals from (1) on a constant
and two of the three (to prevent collinearity) dummy variables. Notice that this gives us the same results as
running the built-in heteroskedastisity test (Breusch-Pagan-Godfrey) in EViews:

• The F statistic from this regression for the hypothesis that the coefficients of the dummy variables are
zero is 5.872. It is asymptotically distributed as F (k, n− k − 1) = F (2, 4263), and the p-value is 0.0028.

• An alternative statistic is nR2, which is equal to 11.72. It is asymptotically distributed as χ2
k = χ2

2, and
the p value is 0.0029. (Recall from the lecture that this is worse than F test in finite samples).

The two test statistics yield identical inferences, namely, that the null hypothesis should be rejected at any
conventional significance level.

4 Problem on heteroskedasticity modelling

Consider the model yi = βxi + εi (without constant term and with k = 1), where xi > 0 for all observations,
E(εi) = 0, E(εiεj) = 0, i 6= j, and E(ε2i ) = σ2

i . Consider the following three estimators of β:

b1 =

∑n
i=1 xiyi∑n
i=1 x

2
i

,

b2 =

∑n
i=1 yi∑n
i=1 xi

,

b3 =
1

n

n∑
i=1

yi
xi
.

2Average annual earnings in 1988 and 1989, in 1982 US dollars, for individuals in three age groups.
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For each estimator, derive a model for the variances σ2
i for which this estimator is the best linear unbiased

estimator of β.

Recall that when we have a model for heteroskedasticity, i.e. in Var(ui|xi) = σ2h(xi) the function hi = h(xi)
is known, then transforming the original data by dividing them by

√
hi results in a linear regression where all

Gauss-Markov assumptions are satisfied, which means that the corresponding OLS estimator is BLUE.

Consider

yi = βxi + εi, Var(ui|xi) = σ2hi,

yi√
hi︸︷︷︸

=:y∗i

= β
xi√
hi︸︷︷︸

=:x∗
i

+
εi√
hi︸︷︷︸

=:εi∗

, Var

(
ui√
hi

∣∣∣∣xi) = σ2,

so that the corresponding OLS estimator is

β̂OLS =

∑n
i=1 x

∗
i y
∗
i∑n

i=1(x∗i )
2

=

∑n
i=1

xi√
hi

yi√
hi∑n

i=1

(
xi√
hi

)2
=

∑n
i=1

xiyi
hi∑n

i=1
x2
i

hi

.

Hence, we simply need to find what functions hi have led to the three given WLS estimators b1–b3.

1. To have β̂OLS = b1 we need ∑n
i=1

xiyi
hi∑n

i=1
x2
i

hi

=

∑n
i=1 xiyi∑n
i=1 x

2
i

,

which means that hi = 1, i = 1, . . . , n (or hi = C for any other positive constant C, since this would
simply drop out in the numerator and the denominator), and Var(ui|xi) = σ2. Notice that this is simply
the OLS estimator for the homoskedastic case.

2. To have β̂OLS = b2 we need ∑n
i=1

xiyi
hi∑n

i=1
x2
i

hi

=

∑n
i=1 yi∑n
i=1 xi

,

which means that hi = xi, i = 1, . . . , n (or hi = Cxi for any other positive constant C), and Var(ui|xi) =
σ2xi. Notice that this is a valid expression for the variance due to the assumption that xi > 0, i = 1, . . . , n.

3. To have β̂OLS = b3 we need ∑n
i=1

xiyi
hi∑n

i=1
x2
i

hi

=
1

n

n∑
i=1

yi
xi

=

∑n
i=1

yi
xi

n
=

∑n
i=1

xi

xi

yi
xi∑n

i=1
x2
i

x2
i

,

which means that hi = x2i , i = 1, . . . , n (or hi = Cx2i for any other positive constant C), and Var(ui|xi) =
σ2x2i .

5 Computer Exercises

Exercise 1

Simulate n = 100 data points as follows. Let xi consist of 100 random drawings from the standard normal
distribution, let ηi be a random drawing from the distribution N (0, x2i ), and let yi = xi + ηi (i.e. the true value
is β = 1). We will estimate the model yi = βxi + εi.
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(i) Estimate β by OLS. Compute the homoskedasticity-only standard error of β̂OLS and the White heteroskedasticity-

robust standard error of β̂OLS.

(ii) Estimate β by WLS using the knowledge that σ2
i = σ2x2i . Compare the estimate and the homoskedasticity-

only and heteroskedasticity-robust standard errors obtained for this WLS estimator with the results for
OLS in (i).

We start with constructing the (correctly) transformed series:

y∗i :=
yi
xi
, x∗i :=

xi
xi

= 1, ε∗i :=
εi
xi
,

so that now the transformed error terms ε∗i are homoskedastic. We then run two OLS regressions on
the transformed series (one with the homoskedasticity-only standard errors and one with the White
heteroskedasticity-robust standard errors). Not surprisingly, both give us the same results.

Next, we run two WLS regressions on the original series, using the correct weights, hi = x2i (again, one
with the homoskedasticity-only standard errors and one with the White heteroskedasticity-robust standard
errors). Notice that because now xi can be negative we need to take their absolute values for weighting.
As expected, the results are exactly the same as in the previous ‘transformed’ case.
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(iii) Now estimate β by WLS using the (incorrect) heteroskedasticity model σ2
i = σ2

x2
i

. Compute the standard

error of this estimate in three ways: by the WLS expression corresponding to this (incorrect) model, by
the White method for OLS on the (incorrectly) weighted data, and also by deriving the correct formula for
the standard deviation of WLS with this incorrect model for the variance.

We start with constructing the (incorrectly) transformed series:

y∗∗i := yixi, x∗∗i := xixi = x2i , ε∗∗i := εixi,

so that now the transformed error terms ε∗∗i are heteroskedastic. To have a reference to the previous
subpoint, we run four regressions: two OLS ones and two WLS ones, each time with one with the
homoskedasticity-only standard errors and one with the White heteroskedasticity-robust standard errors.
Now the not-heteroskedasticity-robustified regressions (OLS and WLS) give the same results, and so do
both (OLS and WLS) with the White correction.

What is left is to derive the correct formula for the standard deviation of WLS under the incorrect model
for the variance. Recall that in the one-variable (and without a constant term) setting we have

β̂WLS =

∑n
i=1

xiyi
hi∑n

i=1
x2
i

hi

,

so with the weights hi = 1
x2
i

and using yi = βxi + εi, we arrive at

β̂WLS =

∑n
i=1 x

3
i yi∑n

i=1 x
4
i

=

∑n
i=1 x

3
i (βxi + εi)∑n
i=1 x

4
i

= β +

∑n
i=1 x

3
i εi∑n

i=1 x
4
i

.
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Because β̂WLS is unbiased, i.e. E
(
β̂WLS

∣∣∣x) = β, the variance of β̂WLS is

Var
(
β̂WLS

∣∣∣x) = E
[(
β̂WLS − E

(
β̂WLS

∣∣∣x))2∣∣∣∣x]
= E

[(
β +

∑n
i=1 x

3
i εi∑n

i=1 x
4
i

− β
)2
∣∣∣∣∣x
]

= E

[ (∑n
i=1 x

3
i εi
)2

(
∑n
i=1 x

4
i )

2

∣∣∣∣∣x
]

(∗)
=

∑n
i=1 x

6
iE
[
ε2i |xi

]
(
∑n
i=1 x

4
i )

2

(∗∗)
=

∑n
i=1 x

6
iVar [εi|xi]

(
∑n
i=1 x

4
i )

2

(∗∗∗)
=

∑n
i=1 x

8
i

(
∑n
i=1 x

4
i )

2 ,

where in (∗) we use the conditioning on x and the fact that εi are mutually independent, in (∗∗) the fact
that E(εi|xi) = 0 and in (∗ ∗ ∗) that Var(εi|xi) = σ2x2i = x2i .

For the simulated xi we obtain
∑n
i=1 x

4
i = 318.3814 and

∑n
i=1 x

8
i = 9962.1182, hence

V̂ar
(
β̂WLS

∣∣∣x) =
9962.1182

(318.3814)2
= 0.0983,

so that the standard deviation of β̂WLS is
√

0.0983 ≈ 0.3135. This shows that the standard error from
the heteroskedasticity-robust regressions of 0.22 is still estimated with some error.

(iv) Perform 1000 simulations, where the n = 1000 values of xi remain the same over all simulations but the 100
values of ηi are different drawings from the N (0, x2i ) distributions and where the values of yi = xi+ηi differ
accordingly between the simulations. Determine the sample standard deviations over the 1000 simulations
of the three estimators of β in (i)-(iii), that is, OLS, WLS (with correct weights), and WLS (with incorrect
weights).

Figure 1 present an EViews code used for this simulation experiment (and also for the previous compu-
tations). The standard deviations of the obtained series of 1000 estimates for β using the required three
methods are as follows:

St.dev(β̂OLS) = 0.1799,

St.dev(β̂WLS,correct) = 0.0972,

St.dev(β̂WLS,incorrect) = 0.3155.

Notice that the last value is almost identical to the theoretical one, obtained in (iii).

(v) Compare the three sample standard deviations in (iv) with the estimated standard errors in (i)–(iii), and
comment on the outcomes. Which standard errors are reliable, and which ones are not?

The table below summarises the required results. Clearly, WLS with the correctly specified model for the
variances gives reliable standard errors. OLS and WLS with the incorrect weighting greatly underestimate
the variability of the estimator for β when the heteroskedasticity-robust standard errors are not used.
When the latter are applied the standard error for both methods improve considerably, but still are
estimated with some error.

Single estimation st. errors
Method Homosked. only Heterosked. robust Simulation st. deviations
OLS 0.0956 0.1597 0.1799
WLS correct 0.0989 0.0989 0.0972
WLS incorrect 0.0895 0.2296 0.3155
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Figure 1: EViews code example for Computer Exercise 1.
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Exercise 2

Consider the bank wages data bankwages.wf1 with the regression model

yi = β1 + β2xi + β3Dgi + β4Dmi + β5D2i + β6D3i + εi,

where yi is the logarithm of yearly wage, xi is the number of years of education, Dg is a gender dummy (1 for
males, 0 for females), and Dm is a minority dummy (1 for minorities, 0 otherwise). Administration is taken as
reference category and D2 and D3 are dummy variables (D2 = 1 for individuals with a custodial job and D2 = 0
otherwise, and D3 = 1 for individuals with a management position and D3 = 0 otherwise).

(i) Consider the following multiplicative model for the variances:

σ2
i = E[ε2i ] = eγ1+γ2D2+γ3D3 .

Estimate the nine parameters (six regression parameters and three variance parameters) by (two-step)
FWLS. Obtain the estimates of the standard deviations per job category and interpret the results.

To apply (two-step) FWLS, we start by estimating the regression and the model for variances by OLS.
For the latter we consider as the explained variable log(ε̂2i ), where ε̂i are the OLS residuals of from the
first regression.

Keeping in mind the correction factor for multiplicative models (assuming that εi has a normal distribu-
tion), we estimate the variances as

σ̂2
i = exp(1.27 + γ̂1 + γ̂2D2i + γ̂3D3i),

so that

σ̂2
1 = exp(1.27 + γ̂1),

σ̂2
2 = exp(1.27 + γ̂1 + γ̂2),

σ̂2
3 = exp(1.27 + γ̂1 + γ̂3).

Plugging in the obtained estimates, we obtain:

σ̂2
1 = exp(1.27− 4.7332) = 0.0313,

σ̂2
2 = exp(1.27− 4.7332− 0.2892) = 0.0235,

σ̂2
3 = exp(1.27− 4.7332 + 0.4605) = 0.0497,

which gives us the required standard deviations per job category:

σ̂1 =
√
σ̂2
1 = 0.1769,

σ̂2 =
√
σ̂2
2 = 0.1532,

σ̂3 =
√
σ̂2
3 = 0.2228.

As expected, the standard deviation is smallest for custodial jobs and it is largest for management jobs.
Notice, however, that the estimates γ̂2 and γ̂3 are not significant, indicating that the homoskedasticity of
the error cannot be rejected.

Next, we run WLS with weights equal to the inverse of the fitted standard deviation.
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We can see that the outcomes are quite close to those of OLS, so that the effect of heteroskedasticity
is relatively small (which is in line with the fact that we did not reject the null of homoskedastic error
term).

(ii) Next, adjust the model for the variances as follows:

E[ε2i ] = γ1 + γ2D2 + γ3D3 + γ4xi + γ5x
2
i ,

i.e. the model for the variances is additive and contains also effects of the level of education.
Estimate the eleven parameters (six regression parameters and five variance parameters) by (two-step)
FWLS and compare the outcomes with the results in (i).

With the additive model we now estimate the variances as

σ̂2
i = γ̂1 + γ̂2D2i + γ̂3D3i + γ̂4xi + γ̂5x

2
i ,

so that

σ̂2
1 = γ̂1 + γ̂4xi + γ̂5x

2
i ,

= 0.0163 + 0.0005xi + 7e-05x2i ,

σ̂2
2 = γ̂1 + γ̂2 + γ̂4xi + γ̂5x

2
i

= 0.0163− 0.0124 + 0.0005xi + 7e-05x2i ,

σ̂2
3 = γ̂1 + γ̂3 + γ̂4xi + γ̂5x

2
i

= 0.0163 + 0.0085 + 0.0005xi + 7e-05x2i .
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Notice that this time we cannot obtain standard deviations per job category, because the estimates of
standard deviation are individual specific (depending on the education level). However, the estimates
γ̂2–γ̂5 are not significant, indicating that again the homoskedasticity of the error cannot be rejected.

Below we sum up the three sets of standard errors.

Standard errors

Variable β̂k OLS FWLS no xi FWLS with xi
C 9.574694 0.054218 0.052131 0.047967
EDUC 0.044192 0.004285 0.004123 0.003885
GENDER 0.178340 0.020962 0.020345 0.020253
MINORITY -0.074858 0.022459 0.021330 0.020538
DUMJCAT2 0.170360 0.043494 0.037542 0.032217
DUMJCAT3 0.539075 0.030213 0.032882 0.032881

We can see that changing of the model for heteroskedasticity does not have a big impact on the results,
which are similar to those from (i). Nevertheless, the “additive” FWLS estimator including the education
effect is somewhat more accurate than the “multiplicative”, job-category-only FWLS estimator, which is
a bit more accurate than the OLS one.

(iii) Check that the data in the data file are sorted with increasing values of xi. Inspect the histogram of xi
and choose two subsamples to perform the Goldfeld–Quandt test3 on possible heteroskedasticity due to the
variable xi.

Based on the plots of xi above we choose xi ≤ 12 as the first group and xi >= 15 as the second group, so
that both groups are large enough and so that there are some observations dropped with 12 < xi < 15 (a
few ones with xi = 14). This results in n1 = 241, n2 = 225 and n3 = n− n1 − n2 = 84.

Running the original regression (with k = 5) on both subsamples yields SSR1 = 6.4217 and SSR2 =
10.4635, so that we obtain

F =
SSR2

n2−k
SSR1

n1−k
=

10.4635

6.4217
· 241− 5

225− 5
= 1.7627

3Since the Goldfeld-Quandt has not been in the lecture slides, it will be explained during the tutorial.
4You can use the commands smpl if educ<=12, scalar n1 = @obssmpl and smpl if educ>=15, scalar n2 = @obssmpl in

EViews.
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(with the exact values in EViews, with the above ones it is 1.7479), which under the null of homosekdas-
ticity follows the F (n2 = k, n1 − k) = F (225− 5, 241− 5) = F (220, 236) distribution. The corresponding
p-value is 9.76E-06 so virtually 0. Hence, at any reasonable significance level we reject the null of ho-
moskedasticity and conclude that there is evidence for heteroskedasticy due to the education level.

(iv) Perform the Breusch–Pagan test on heteroskedasticity, using the specified model for the variances.

We still use the additive model for the variances from (ii), i.e. we consider R2 from the auxiliary regression
from (ii)

ε̂2i = γ1 + γ2D2 + γ3D3 + γ4xi + γ5x
2
i + ηi.

With R2 = 0.0258, the obtained value of the LM statistic is

LM = nR2 = 474 · 0.0258 = 12.2255,

with the corresponding p-value of 0.0157 (we use the χ2
4 distribution). Hence, at the standard significance

level of 5% we can reject the null of homoskedasticity.

Alternatively, we can run the built-in test in EViews, where we need to adjust the regressors in the test
specification box, which leads to the same results.

(v) Also perform the White test on heteroskedasticity.

The results for the White test without and with cross terms, respectively, are shown below.

The LM statistic for the White test without cross terms is equal to 13.0811 and under the null it follows
the χ2

5 distribution. The corresponding p-value is 0.0226. For the White test with cross terms we obtain
LM = 28.7527, which follows the χ2

14 distribution under the null and yields the p-value of 0.0113. Either
way we can reject the null of homoskedasticity at the standard significance level of 5% .
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(vi) Comment on the similarities and differences between the test outcomes in (iii)–(v).

The main similarity is that all three tests rejected the null of homoskedasticity, hence we have strong
grounds to claim that the variance of the unobserved factors changes across different segments of the
analysed data.

A difference is the exact level of the p-value: some tests may have more power to detect heteroskedasticity
for this dataset (and reject H0 more clearly with a lower p-value).

Another difference is that the Goldfeld-Quandt test assumes that the errors are normally distributed,
whereas the Breusch-Pagan and White tests do not rely on this assumption.
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